
Bor̊uvka’s algorithm

Evan Alba

Introduction

Bor̊uvka’s algorithm is a greedy algorithm for finding a minimum spanning tree in a graph. It was
published in 1926 by Otakar Bor̊uvka, a Czech mathematician as a method of constructing an effi-
cient electricity network for the South-Moravia district in the region Moravia, Czech Republic. [2]
(Fun Fact: The first textbook on graph theory was written by Dénes Kőnig, and published in 1936.
This algorithm was published way before graph theory was being taught interestingly.) Besides
constructing an efficient electricity network for the South-Moravia district, another application of
Bor̊uvka’s algorithm is used parallel computing literature, in which Bor̊uvka’s algorithm is typically
refered as Sollin’s algorithm due to the computer scientist George Sollin. In the first place using
Bor̊uvka’s algorithm, we define our problem as follows:

Given a connected (undirected) graph G = (V, E) with real weights assigned to its edges. Find a
spanning tree (V, T) of G(i.e. T ⊆ E) with the minimal weight w(T).

Intuition

The main intuition behind the algorithm is to simply iteratively build the minimum spanning tree
by finding the minimum edges that connect different connected components in the graph. In other
words, our intuition goes as follows:
1. Start with isolated vertices. (Initially, each vertex in the graph is considered an isolated
component.)
2. Find the minimum edges. (During each iteration, we find the minimum edge that is adjacent
to each component. Note: If we have a tie in the minimum edge, we pick the minimum edge we
have seen first.)
3. Add the minimum edges to the minimum spanning tree. (Note: We add the minimum
edges as long as they do not cycles.)
4. Unite Components. (Unite if possible 2 separate components if the minimum edge does not
already it’s vertex endpoints under 1 component united.)
5. Repeat until all are connected. (We repeat the process of finding minimum edges and add
them to the minimum spanning tree until all vertices are connected in a single component in which
contains the minimum spanning tree we are looking for.)

Therefore, by using Bor̊uvka’s algorithm to calculate the minimum spanning tree, we can get the min-
imum weighted cost for connecting to all the vertices. Additionally, if there is a forest disconnected
graphs while using Bor̊uvka’s algorithm, it identifies the minimum spanning tree for each individual
connected graph component. The outcome then becomes a forest collection of minimum-spanning
trees.

1

2

Pseudocode and Detailed Description

f unc t i on BORUVKA(G) :
INITIALIZE−SINGLE−COMPONENT(G)
// Let A = Minimum Spanning Tree Set
A = ∅
whi le A does not form a spanning t r e e

f o r each t r e e T in G. f o r e s t
e = MINIMUM−WEIGHT−EDGE(T, G)
A = A ∪ {e}
i f FIND−SET(e . u) ̸= FIND−SET(e . v)

UNION(e . u , e . v)
re turn A

func t i on INITIALIZE−SINGLE−COMPONENT(G)
f o r each ver tex v in G.V

MAKE−SET(v)

func t i on MINIMUM−WEIGHT−EDGE(T, G) :
min edge = NIL
min weight = ∞
f o r each edge e in G.E

i f exac t l y one endpoint o f e be longs to T
v = other endpoint o f e (not in T)
i f w(e) < min weight

min edge = e
min weight = w(e)

re turn min edge

func t i on MAKE−SET(x) :
x . p = x
x . rank = 0

func t i on FIND−SET(x) :
i f x ̸= x . p // not the root ?

x . p = FIND−SET(x . p) // the root becomes the parent
re turn x . p // return the root

func t i on UNION(x , y) :
LINK(FIND−SET(x) , FIND−SET(y))

func t i on LINK(x , y) :
i f x . rank > y . rank

y . p = x
e l s e x . p = y

i f x . rank == y . rank
y . rank = y . rank + 1

3

Note: The pseudocode of MAKE-SET, FIND-SET, UNION, and LINK come from the Introduction
to Algorithms (CLRS) textbook. [1]

e.g. A visual of Bor̊uvka’s algorithm in action. [3]

Figure 1: Components: {A}, {B}, {C}, {D}, {E}, {F}, {G}. Our original starting weighted graph
where every vertex by itself is a component (blue circles) and every edge contains a weight.

4

Figure 2: Components: {A, B, D, F}, {C, E, G}. During the first iteration of the outer loop, the
edge with smallest weight adjacent of every component is added to the minimum spanning tree.
Note: Some edges may be selected twice such as (AD, CE). If a minimum edge end point vertices do
not belong to the same component, unite them into a component together. After this 1st iteration,
we have not finished Bor̊uvka’s algorithm due two components remaining, we need to have only 1
big component in which it contains the minimum spanning tree of the graph given.

5

Figure 3: Components: {A, B, C, D, E, F, G}. In the second and final iteration, the minimum
weighted edge out of each of the two remaining components is added; coincidentally, it is the same
one (B, E). Afterwards, one component remains, and we are done. Note: The edge (B, D) is not
considered because both vertex endpoints are in the same component.

6

Run Time Analysis

7

Table 1: Empirical study of Minimum Spanning Tree algorithms
Sample sizes of N vertices: 10 100 123 146

Boruvka
Barabasi-Albert Random Graph 1 2.43e-5 0.000138216 9.14e-5 7.88e-5
Barabasi-Albert Random Graph 2 1.51e-5 0.000110803 1.04e-4 0.000138769
Barabasi-Albert Random Graph 3 6.57e-6 0.000110668 6.80e-5 0.000108274
Barabasi-Albert Random Graph 4 1.58e-5 6.97e-5 7.07e-5 1.13e-4
Barabasi-Albert Random Graph 5 1.07e-5 0.000101907 0.000148186 8.29e-5

Average: Average: Average: Average:
1.45e-5 0.0001062612 9.64e-5 1.04e-4

Kruskal
Barabasi-Albert Random Graph 1 1.66e-5 0.000154373 0.000136166 0.000133298
Barabasi-Albert Random Graph 2 1.04e-5 0.000153346 0.000159567 0.000201087
Barabasi-Albert Random Graph 3 6.57e-6 0.000131004 0.000120207 0.000194174
Barabasi-Albert Random Graph 4 9.77e-6 0.000132552 0.000145113 0.000192999
Barabasi-Albert Random Graph 5 1.65e-5 0.000153909 0.000186299 0.000139383

Average: Average: Average: Average:
1.20e-5 0.0001450368 0.0001494704 0.0001721882

Prim
Barabasi-Albert Random Graph 1 4.10e-5 0.00113051 0.00149131 0.00153231
Barabasi-Albert Random Graph 2 1.67e-5 0.00119967 0.00160627 0.00203915
Barabasi-Albert Random Graph 3 1.61e-5 0.0010315 0.00126785 0.00213344
Barabasi-Albert Random Graph 4 2.12e-5 0.00113705 0.00134214 0.00214334
Barabasi-Albert Random Graph 5 2.60e-5 0.00112834 0.00129528 0.00168224

Average: Average: Average: Average:
2.42e-5 0.001125414 0.00140057 0.0019060960000000001

Boruvka
Erdos-Renyi Random Graph 1 9.29e-6 0.000109706 0.000105559 0.000157308
Erdos-Renyi Random Graph 2 7.96e-6 9.75e-5 0.000103243 0.00013404
Erdos-Renyi Random Graph 3 7.89e-6 0.000107925 0.000127167 0.000159334
Erdos-Renyi Random Graph 4 4.59e-6 0.000149366 0.000125105 0.000156576
Erdos-Renyi Random Graph 5 9.68e-6 8.87e-5 0.000131142 0.000182932

Average: Average: Average: Average:
7.88e-6 0.0001106292 0.0001184432 0.00015803800000000002

Kruskal
Erdos-Renyi Random Graph 1 7.21e-6 0.000188983 0.000276763 0.000342615
Erdos-Renyi Random Graph 2 5.69e-6 0.000183724 0.000228981 0.000340827
Erdos-Renyi Random Graph 3 6.13e-6 0.000168772 0.000299339 0.000436534
Erdos-Renyi Random Graph 4 3.12e-6 0.000231831 0.000240922 0.000391516
Erdos-Renyi Random Graph 5 7.07e-6 0.0001753 0.000259229 0.000471722

Average: Average: Average: Average:
5.85e-6 0.00018972199999999997 0.00026104679999999997 0.0003966428

Prim
Erdos-Renyi Random Graph 1 1.80e-5 0.00113712 0.00133722 0.00161312
Erdos-Renyi Random Graph 2 1.03e-5 0.00118436 0.00118496 0.00175618
Erdos-Renyi Random Graph 3 9.99e-6 0.00112847 0.00134836 0.00180173
Erdos-Renyi Random Graph 4 8.09e-6 0.00122451 0.0012377 0.00164951
Erdos-Renyi Random Graph 5 2.21e-5 0.00122675 0.00135016 0.00191823

Average: Average: Average: Average:
1.37e-5 0.0011802420000000002 0.00129168 0.001747754

Boruvka
Random Tree 1 1.10e-5 4.79e-5 5.33e-5 6.67e-5
Random Tree 2 5.55e-6 4.20e-5 5.51e-5 7.64e-5
Random Tree 3 1.15e-5 2.91e-5 6.80e-5 6.17e-5
Random Tree 4 6.72e-6 2.63e-5 5.73e-5 6.98e-5
Random Tree 5 6.62e-6 3.09e-5 5.54e-5 7.74e-5

Average: Average: Average: Average:
8.28e-6 3.52e-5 5.78e-5 7.04e-5

Kruskal
Random Tree 1 8.00e-6 6.70e-5 6.05e-5 7.04e-5
Random Tree 2 4.63e-6 5.09e-5 6.12e-5 7.38e-5
Random Tree 3 9.86e-6 3.60e-5 8.14e-5 6.21e-5
Random Tree 4 5.41e-6 3.25e-5 6.80e-5 0.000104344
Random Tree 5 1.59e-5 3.86e-5 6.12e-5 7.34e-5

Average: Average: Average: Average:
8.75e-6 4.50e-5 6.64e-5 7.68e-5

Prim
Random Tree 1 2.02e-5 0.00113064 0.00145761 0.00177217
Random Tree 2 9.12e-6 0.00102145 0.00162498 0.00225912
Random Tree 3 2.44e-5 0.000939006 0.00138988 0.00188811
Random Tree 4 1.56e-5 0.00107853 0.00145543 0.00182982
Random Tree 5 2.93e-5 0.000858781 0.00137783 0.00207076

Average: Average: Average: Average:
1.97e-5 0.0010056814000000002 0.001461146 0.001963996

8

Table 2: System Specifications
Operating system: Ubuntu 22.04.4 LTS
CPU: Intel(R) Core(TM) i5-5250U CPU @ 1.60GHz
Memory: 1GiB

The runtime for Bor̊uvka’s algorithm is O(|E|log|V |). A faster randomized minimum spanning tree
algorithm based on Bor̊uvka’s algorithm due to Karger, Klein, and Tarjan runs in expected O(E)
time. The best known (deterministic) minimum spanning tree algorithm by Bernard Chazelle is also
based on Bor̊uvka’s algorithm and runs in O(Eα(E, V)) time, where α is the inverse Ackermann
function (a very slowly growing function.).[3]

References

[1] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2022.

[2] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. “Otakar Bor̊uvka on minimum spanning
tree problem Translation of both the 1926 papers, comments, history”. In: Discrete Mathematics
233.1 (2001). Czech and Slovak 2, pp. 3–36. issn: 0012-365X. doi: https://doi.org/10.1016/
S0012-365X(00)00224-7. url: https://www.sciencedirect.com/science/article/pii/
S0012365X00002247.

[3] Wikipedia contributors. Bor̊uvka’s algorithm. url: https://en.wikipedia.org/wiki/Bor%
C5%AFvka’s_algorithm.

